Дозиметрические приборы - ορισμός. Τι είναι το Дозиметрические приборы
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Дозиметрические приборы - ορισμός

Приборы контроля двигателей; Пилотажно-навигационные приборы
  • механизации]]
  • Панель кондиционирования воздуха [[Ан-74]], вверху — термометр ТВ-1
  • Кабина Ан-26, рабочие места лётчиков
  • Место бортинженера Ту-95МС. На центральной приборной доске слева направо по вертикали расположены приборы контроля двигателей: 4-3-2-1
  • '''Т'''ахометр ТЭ-40М и его датчик ДТ-1М; '''и'''ндикатор ИТА-6М и его датчик ДТЭ-5Т; '''д'''атчик ДТ-33; '''б'''лок отключения генератора БОГ-1 и его [[тахогенератор]] ТГ-6Т
  • виброаппаратуры]]
  • Приборная доска командира вертолёта Ми-8

Дозиметрические приборы      

дозиметры, устройства, предназначенные для измерения доз (См. Доза) ионизирующих излучений или величин, связанных с дозами. Д. п. могут служить для измерения доз одного вида излучения (γ-дозиметры, нейтронные дозиметры и т. д.) или смешанного излучения. Д. п. для измерения экспозиционных доз рентгеновского и γ-излучений обычно градуируют в Рентгенах и называются рентгенметрами. Д. п. для измерения эквивалентной дозы, характеризующей степень радиационной опасности, иногда градуируют в Бэрах и их часто называют бэрметрами. Радиометрами измеряют активности или концентрацию радиоактивных веществ (см. Радиометрия).

Типичная блок-схема Д. п. показана на рис. 1. В детекторе происходит поглощение энергии излучения, приводящее к возникновению радиационных эффектов, величина которых измеряется с помощью измерительных устройств. По отношению к измерительной аппаратуре детектор является датчиком сигналов. Показания Д. п. регистрируются выходным устройством (стрелочные приборы, самописцы, электромеханические счётчики, звуковые или световые сигнализаторы и т. п.).

По способу эксплуатации различают Д. п. стационарные, переносные (можно переносить только в выключенном состоянии) и носимые. Д. п. для измерения дозы излучения, получаемой каждым человеком, находящимся в зоне облучения, называются индивидуальным дозиметром.

В зависимости от типа детектора различают: ионизационные дозиметры, сцинтилляционные, люминесцентные, полупроводниковые, фотодозиметры и т. д. (см. Детекторы ядерных излучений).

В случае ионизационных камер (См. Ионизационная камера) состав газа и вещества стенок выбирают таким, чтобы при тождественных условиях облучения обеспечивалось одинаковое поглощение энергии (в расчёте на единицу массы) в камере и биологической ткани. В Д. п. для измерения экспозиционных доз камеры наполняют воздухом. Пример ионизационного дозиметра - микрорентгенметр МРМ-2. Прибор снабжён сферической ионизационной камерой и обеспечивает диапазон измерения от 0,01 до 30 мкр/сек для излучений с энергиями фотонов от 25 кэв до 3 Мэв. Отсчёт показаний производится по стрелочному прибору.

Прибор СД-1-М (рис. 2) служит для предупреждения о превышении заданной величины мощности дозы γ-излучения. Детектором служит Гейгера - Мюллера счётчик, помещённый в цилиндрический чехол. Прибор снабжён звуковой и световой сигнализацией, которая срабатывает при превышении заданной величины мощности дозы. Порог срабатывания регулируется в пределах от 2 до 10 мр/сек. Внешняя сигнализация может быть удалена на расстояние до 250 м от датчика; она автоматически отключается при уменьшении уровня излучения ниже порога срабатывания.

Прибор СУ-1 предназначен для автоматического контроля загрязнённости α- и β-активными веществами поверхностей тела и одежды человека. Он имеет несколько газоразрядных счётчиков, расположенных так, что счётчики регистрируют излучение со всей поверхности тела человека. На специальном световом табло, изображающем силуэт человека, загораются световые сигналы, показывающие места превышения допустимых норм загрязнения.

Индивидуальные дозиметры ДК-0,2 в виде цилиндров размером с обычный карандаш приспособлены для ношения в кармане (рис. 3). В цилиндре размещены миниатюрная ионизационная камера и однонитный Электрометр. Отклонение нити электрометра и отсчёт дозы производятся визуально с помощью оптического устройства со шкалой, проградуированной в мр. Ионизационная камера играет роль конденсатора, который разряжается в результате ионизации воздуха (между электродами) под действием ионизирующего излучения. Степень разрядки конденсатора фиксируется по отклонению нити электрометра и однозначно определяет дозу излучения (дозиметр предварительно заряжается с помощью специального зарядного устройства).

В сцинтилляционных Д. п. световые вспышки, возникающие в сцинтилляторе под действием излучения, преобразуются с помощью фотоэлектронного умножителя (См. Фотоэлектронный умножитель) в электрические сигналы, которые затем регистрируются измерительным устройством (см. Сцинтилляционный спектрометр).

В люминесцентных Д. п. используется тот факт, что люминофоры способны накапливать поглощённую энергию излучения, а затем освобождать её путём люминесценции (См. Люминесценция) под действием дополнительного возбуждения, которое осуществляется либо нагревом люминофора, либо его облучением. Интенсивность световой вспышки люминесценции, измеряемая с помощью специальных устройств, пропорциональна дозе излучения. В зависимости от механизма люминесценции и способа дополнительного возбуждения различают термолюминесцентные (рис. 4) и радиофотолюминесцентные дозиметры. Особенностью люминесцентных дозиметров является способность сохранять информацию о дозе; в нужный момент информация может быть получена путём дополнительного возбуждения. Дальнейшим развитием люминесцентных дозиметров явились Д. п., основанные на термоэкзоэлектронной эмиссии. При нагреве некоторых люминофоров, предварительно облучённых ионизирующим излучением, с их поверхности вылетают электроны (экзоэлектроны). Их число пропорционально дозе излучения в веществе люминофора. Экзоэлектроны обладают очень малыми энергиями (до 10 эв) и их регистрация затруднительна. В одном из экспериментальных вариантов такого дозиметра люминофор помещается внутрь газоразрядного счётчика, что позволяет зарегистрировать экзоэлектроны.

К числу устройств, накапливающих информацию о дозе излучения, относятся Д. п., в которых детектором служат специальные сорта фоточувствительных плёнок. Оптическая плотность почернения (после химической обработки) является мерой дозы излучения.

Лит.: Иванов В. И., Курс дозиметрии, 2 изд., М., 1970.

В. И. Иванов.

Рис. 1. Блок-схема дозиметра.

Рис. 3. Дозиметр СД-1-М.

Рис. 5. Комплект индивидуальных дозиметров ДК-0,2 с общим измерительным устройством (слева).

Рис. 6. Индивидуальные термолюминесцентные дозиметры производства бельгийской фирмы. Люминофор запаян в стеклянный баллон вместе с нагревательной спиралью, электроды которой выведены наружу. Баллон помещается в металлический или пластмассовый футляр, имеющий приспособление для карманного ношения. Для измерения дозы стеклянный баллон своими электродами вставляется в измерительное устройство, в котором происходят нагрев люминофора путём пропускания электрического тока через нагревательную спираль и измерение интенсивности света термолюминесценции. Вся процедура измерения занимает несколько минут. После достаточного прогрева дозиметр снова готов к работе.

БИОМЕТРИЯ         
  • Приблизительная структурная схема биометрического анализа{{ref-en}}
(от био ... и ...метрия), раздел биологии, основные задачи которого - планирование количественных биологических экспериментов и обработка результатов методами математической статистики. Основы биометрии заложены в кон. 19 в. работами английских ученых Ф. Гальтона и К. Пирсона.
Биометрия         
  • Приблизительная структурная схема биометрического анализа{{ref-en}}
(îò áèî (Ñì. Áèî...)... è...ìåòðèÿ (Ñì. ...метрия))

раздел биологии, содержанием которого являются планирование и обработка результатов количественных экспериментов и наблюдений методами математической статистики (См. Математическая статистика). При проведении биологических экспериментов и наблюдений исследователь всегда имеет дело с количественными вариациями частоты встречаемости или степени проявления различных признаков и свойств. Поэтому без специального статистического анализа обычно нельзя решить, каковы возможные пределы случайных колебаний изучаемой величины и являются ли наблюдаемые разницы между вариантами опыта случайными или достоверными. Математико-статистические методы, применяемые в биологии, разрабатываются иногда вне зависимости от биологических исследований, но чаще в связи с задачами, возникающими в биологии, сельском хозяйстве и медицине.

Б. как самостоятельная дисциплина сложилась к концу 19 в. в результате работ Ф. Гальтона (Англия), внёсшего большой вклад в создание корреляционного и регрессионного анализа (см. Корреляция, Регрессия), и К. Пирсона - основателя крупнейшей биометрической школы, подробно проанализировавшего, в частности, основные типы распределений, встречающиеся в биологии; он предложил один из самых распространённых статистических методов - "хи-квадрат" критерий, и развил теорию корреляции. Методология современной Б. создана главным образом Р. А. Фишером (Англия), основавшим свою биометрическую школу. Фишер впервые показал, что планирование экспериментов и наблюдений и обработка их результатов - две неразрывно связанные задачи статистического анализа. Он заложил основы теории планирования эксперимента, предложил ряд эффективных статистических методов (в первую очередь, Дисперсионный анализ), естественно вытекающих из своеобразия биологического эксперимента, и развил теорию малых выборок, начатую английским учёным Стьюдентом (В. Госсетом). Значительную роль в распространении биометрических идей и методов сыграли русские учёные В. И. Романовский, А. А. Сапегин, Ю. А. Филипченко, С. С. Четвериков и др.

Применение математико-статистических методов в биологии по существу представляет выбор некоторой статистической модели, проверку её соответствия экспериментальным данным и анализ статистических и биологических результатов, вытекающих из её рассмотрения. Выбор той или иной модели в значительной мере определяется биологической природой эксперимента. Любая модель содержит ряд предположений, которые должны выполняться в данном эксперименте; обязательно предположение о случайности выбора объектов из общей совокупности; очень распространено предположение об определённом типе распределения исследуемой случайной величины. Планирование эксперимента стало самостоятельным разделом Б., располагающим рядом методов эффективной постановки опыта (различные схемы дисперсионного анализа, последовательный анализ, планирование отсеивающих экспериментов и т.д.). Эти методы позволяют резко сократить объём эксперимента для получения того же количества информации. При обработке результатов экспериментов и наблюдений возникают 3 основные статистические задачи: оценка параметров распределения - среднего, дисперсии и т.д. (например, установление пределов случайных колебаний процента больных, у которых наблюдается улучшение состояния при лечении каким-то испытываемым лекарственным препаратом); сравнение параметров разных выборок (например, решение вопроса, случайна или достоверна разница между средними урожаями изучаемых сортов пшеницы); выявление статистических связей - корреляция, регрессия (например, изучение корреляции между размерами или массой разных органов животного или изучение зависимости частоты повреждения клеток от дозы ионизирующих излучений). Для решения экспериментальных задач наиболее эффективно применение методов многомерной статистики, позволяющих одновременно оценить не только влияние нескольких разных факторов, но и взаимодействие между ними; эти методы находят всё большее применение и для решения задач систематики. Широкое распространение получили и Непараметрические методы, не содержащие предположений о характере распределения случайной величины, но уступающие по эффективности параметрическим методам. В связи с запросами практики интенсивно разрабатываются методы изучения наследуемости (См. Наследуемость), выборочные методы и изучение динамических процессов (временные ряды).

Работы по Б. публикуются в журналах "Biometrica" (L., 1901-); "Biometrics" (Atlanta, 1945-); "Biometrische Zeitschrift" (B., 1959-), а также в различных биологических, с.-х. и медицинских журналах.

Лит.: Бейли Н., Статистические методы в биологии, пер. с англ., М., 1963; Рокицкий П. Ф., Биологическая статистика, 2 изд., Минск, 1967; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961; Урбах В. Ю., Биометрические методы, 2 изд., М., 1964; Финни Д. Д., Применение статистики в опытном деле, пер. с англ., М., 1957; его ж е. Введение в теорию планирования экспериментов, пер. с англ., М., 1970; Фишер Р. А., Статистические методы для исследователей, пер. с англ., М., 1958; Хилл Б., Основы медицинской статистики, пер. с англ., М., 1958; Хикс Ч., Основные принципы планирования эксперимента, пер. с англ., М., 1967; Fisher R. A., The design of experiments, Edinburgh-L., 1960.

Н. В. Глотов, А. А. Ляпунов, Н. В. Тимофеев-Ресовский.

Βικιπαίδεια

Приборное оборудование

Под приборным оборудованием летательного аппарата понимается следующее авиационное оборудование:

Аэрометрические приборы и системы:

  • барометрические высотомеры
  • индикаторы воздушной скорости и числа Маха
  • вариометры
  • приёмники воздушного давления
  • централизованные системы воздушных сигналов

Приборы и системы контроля силовых установок:

  • манометры
  • тахометры
  • термометры
  • системы управления ГТД

Автономные пилотажно-навигационные приборы:

  • авиагоризонты
  • курсовые приборы
  • Автомат углов атаки и сигнализации перегрузок (АУАСП)

На многие аэрометрические (а также и другие, при необходимости) приборы составляются тарировочные графики или таблицы, в которых указывается погрешность показаний прибора против фактических величин. Тарировочные графики устанавливаются в кабине летательного аппарата и периодически обновляются.

В состав приборного оборудования не входят: пилотажные и навигационные комплексные системы, навигационно-прицельные комплексы, системы автоматического управления и их приборы, авиационные индикаторы; топливная аппаратура, радиовысотомеры, радиодальномеры и другие радиотехнические системы, а также приборы контроля бортового электрооборудования.

Примечание: состав приборного оборудования зависит от типа летательного аппарата, конкретно указан в руководящей документации и может несколько различаться на разных типах летатательных аппаратов.
Παραδείγματα από το σώμα κειμένου για Дозиметрические приборы
1. Нас облетел разведывательный самолет ВВС США "Орион". Я полагаю, что американцы боялись подойти близко к лодке: у них ив то время были очень хорошие дозиметрические приборы.
2. Утверждают, что достаточно снять верхний пласт почвы, и на глубине 15 - 18 метров все дозиметрические приборы замолкают, уровень радиации - в пределах нормы.
3. Для выполнения всех этих задач инженерно-разведывательному дозору нужно иметь средства разминирования, химико-дозиметрические приборы, приборы для определения ширины, глубины, скорости течения (тросы, эхолот, рейки, вешки, бинокли, дальномер, нивелир, теодолит, рулетки, уровни, компасы) и для определения характера грунтов (донный щуп, гиревой ударник, шесты) и много чего еще.